дифференциальная поверхность

дифференциальная поверхность
диференці́йна пове́рхня

Русско-украинский политехнический словарь. 2013.

Игры ⚽ Поможем решить контрольную работу

Смотреть что такое "дифференциальная поверхность" в других словарях:

  • Поверхность Лиувилля — ― поверхность, уравнения геодезических линий которой допускают нетривиальный квадратичный интеграл, то есть квадратичную форму , отличную от метрического тензора поверхности, такую что для любой геодезической , Названы в честь Жозефа Лиувилля.… …   Википедия

  • Дифференциальная геометрия —         раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Д. г. являются произвольные достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и …   Большая советская энциклопедия

  • ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел геометрии, в к ром изучаются геометрич. образы, в первую очередь кривые и поверхности, методами математич. анализа. Обычно в Д. г. изучаются свойства кривых и поверхностей в малом, т. е. свойства сколь угодно малых их кусков. Кроме того, в …   Математическая энциклопедия

  • Поверхность — У этого термина существуют и другие значения, см. Поверхность (значения). Пример простой поверхности Поверхность  традиционное название для двумерного многообразия в …   Википедия

  • ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел геометрии, в котором свойства кривых, поверхностей и других геометрических многообразий изучаются методами математического анализа, в первую очередь дифференциального исчисления. Работы по дифференциальной геометрии К. Гаусса (1777 1855),… …   Энциклопедия Кольера

  • Дифференциальная геометрия поверхностей — The Gauss map sends a point on the surface to the outward pointing unit normal vector, a point on S2 Дифференциальная геометрия поверхностей  раздел математики, изучающий поверхности методами …   Википедия

  • Поверхность (геометрия) — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия

  • ПОВЕРХНОСТЬ — одно из основных понятий геометрии. Определения П. в различных областях геометрии существенно отличаются друг от друга. В элементарной геометрии рассматриваются плоскости, многогранные П., а также нек рые кривые П. (напр., сфера). Каждая из… …   Математическая энциклопедия

  • ПЕРЕНОСА ПОВЕРХНОСТЬ — поверхность, образованная параллельным переносом кривой L1 так, что нек рая ее точка скользит по кривой L2. Если r1(u) и r2(v) радиус векторы кривых L1 и L2 соответственно, то радиус вектор П. п. есть , где радиус вектор точки М 0. Линии и=const… …   Математическая энциклопедия

  • ВЕЙНГАРТЕНА ПОВЕРХНОСТЬ — поверхность, средняя кривизна к рой связана с ее гауссовой кривизной функциональной зависимостью. Для того чтобы поверхность Sбыла В. п., необходимо и достаточно, чтобы обе полости ее эволюты были наложимы на поверхности вращения, и ребра… …   Математическая энциклопедия

  • АФФИННАЯ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел геометрии, изучающий дифференциально геометрич. свойства кривых и поверхностей, сохраняющиеся при преобразованиях аффинной группы или ее подгрупп. Наиболее полно изучена дифференциальная геометрия эквиаффинного пространства. В эквиаффинной …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»